HI~欢迎来到数造云打印平台!
3D打印部件可以超声波焊接吗?在某些情况下,是可以。材料和3D打印技术在分辨率、强度和坚固性方面差异,是影响超声波焊接成功与否的关键因素。随着3D打印(3DP)变得普及,价格合理且实用,该技术已被许多行业采用,包括汽车,航空航天,消费品和医疗。因为该技术可以对塑料部件比传统制造方法(例如注塑成型)更快速和经济地进行评估和修改,所以许多制造商将3D打印技术积极用在产品开发中。
这一趋势促使越来越多的客户对超声波焊接提出了新的需求和挑战。那么这种常用的塑料焊接技术是否适用与3D打印制造的部件?要回答这些问题,首先要了解3D打印技术和材料的现状并评估几个问题:
超声波焊接原理,以及它对部件尺寸和物理特性要求,3D打印工艺过程和部件特性,包括超声波焊接所需的零件分辨率,强度和物理特性,用于制造3D打印零件的材料的可焊性。
3D打印部件可以超声波焊接吗?通常,答案是“有时”可以。所有3D打印部件都需要具有超声波焊接所需的一些关键特性:高分辨率,强度,坚固性和可焊性。但尚无法对采用3D打印的各种零件使用超声波焊接。然而,鉴于3D打印材料和技术的快速发展,似乎可以解决和克服这些当前的限制。
超声波焊接的基础知识
超声波焊接是使用通常称为“焊头”的模具,将高频振动(15-50Khz)传递到部件或者材料层。这些振动传递到两个部件的界面并通过交变应力和摩擦产生热量,将材料熔化并将两个部分粘合在一起。该技术快速有效且清洁,无消耗品。超声波工艺还可用于螺丝嵌入、铆接和点焊组件等。超声波焊接十分适合热塑性材料的焊接。热固性材料经历不可逆的化学变化而不能重整,因此不能进行超声波焊接。
其他因素可能影响材料的超声所需能量和可焊性。主要因素包括聚合物结构、密度、熔化温度、粘度、刚度(弹性模量)、导热率和化学组成。无定形和半结晶聚合物都可以焊接。然而,无定形材料通常更容易焊接,因为它们具有较宽的软化温度并且更容易将超声波振动传递到焊接筋上。
在超声波焊接方面,主要有两种类型的超声波焊筋设计:导能筋和剪切焊缝设计,如下图1。两者都需要3D打印零件的高分辨率,因为超声工艺所需的零件特征公差可能非常小。
图1.导能筋(左)和剪切焊缝设计(右)的示例。
导能筋的焊缝设计剪切焊缝设计在两个部件之间有小的过盈配合。焊接从一个很小的接触区域开始,一旦熔化开始,便沿着部件的垂直壁继续向下,以获得较好的焊接强度和气密密封。剪切量的大小:对于尺寸小于20mm的零件,剪切量0.2mm,建议公差为±0.025mm;对于较大的部件(38mm-76mm),剪切量约0.35mm,公差为±0.075mm。剪切焊缝设计需要刚性侧壁支撑以防止焊接过程中的挠曲变形导致剪切量变小。
3D打印技术如何影响超声波焊接零件的制造
虽然3D打印组件可以提供精确的零件几何形状,但这些零件的物理特性与注塑、挤压和机加工成型零件的物理特性是大不相同。
挤压
挤出是当今最常见,最受认可的3D打印技术。它通过熔化热塑性长条状塑料并使其通过管口挤出。挤出的材料沉积在薄层中,形成最终组件的二维切片。这些层连续地印刷堆积,熔融塑料硬化并粘合到下面的层,形成3D物体。
图2.熔丝制造过程的描述。
用于挤出的细丝材料包括经常用于超声波焊接的那些材料,例如ABS,HIPS,尼龙,PC,PC-ABS,PET和PLA,其中ABS和PLA是最常用的3D打印的细丝材料。材料等级由不同制造商定制,以达到特殊属性。3D打印部件的物理强度在层叠的方向上也明显变弱。结果这些层可能在超声波焊接过程中分离破坏。由于层之间的间隙或着同一层印刷路径之间的间隙,因此无法形成一致的气密接头。图3(上方两张)显示了两个导能筋焊缝设计样件:一个由注塑模具生产,另一个采用挤出技术3D打印技术。采用一台Stratasys Dimension Elite 3D打印机,材料是深灰色ABS plus-P430,单层厚度0.17mm。由于打印机挤出宽度的限制,3D打印部件的导能筋通过两次路径创建,最终形成矩形形状(0.35mm高,0.56mm宽)。
剪切焊缝设计不需要尖锐的特征。但是,保持精确的剪切量对于获得可重复的焊接结果非常重要。图3(下方两张)还显示了两个剪切焊缝设计的样品:一个由注塑模具生产,另一个使用与导能筋样件相同的3D打印机和材料的样件。图3.注塑样品(左)和挤出打印样品(右)。
虽然超声波焊接这类挤出式3D打印部件是可能的。但是,相比较相同材料的注塑部件,焊接强度、焊接能量、溢料和密封性能会大大不同。总之,受限于堆叠层与层之间的强度变化,导能筋形状的变化,剪切量的尺寸变化,导致挤出型3D打印部件的超声波焊接无法可重复性实现。如果在零件设计和3D打印制造中克服这些限制,那么零件是可以采用超声波焊接的。图4.选择性激光烧结(SLS)过程的描述。
SLS工艺可以生产比挤出工艺更精确的零件。SLS工艺材料粉末有不同的颗粒大小。SLS工艺可实现的最小层厚度略小于挤出工艺的厚度,约为0.075mm,因此理论上可以获得更高分辨率的焊缝细节。然而,对于SLS工艺,通常不建议打印尺寸小于1mm的壁厚,并且由于SLS分层工艺,精细的细节(例如导能筋的尖点)可能会被“平滑”或丢失。因此,尽管SLS工艺能够生产可超声波焊接的零件,但为了实现一致焊接性能,要求零件设计人员和制造商要克服因特征分辨率、零件孔隙率和零件应力相关问题的限制。
立体光刻(SLA)/数字光蚀(DLP)/材料喷射
有多种技术可以利用光敏聚合物树脂,例如立体光刻(SLA)和数字光蚀(DLP)。这些方法使用聚焦光将光敏聚合物树脂逐层固化成固体零件。第三种方法是材料喷射,用喷墨式印刷头打印薄层的光敏聚合物,并立即用UV光源固化聚合物。使用这些方法生产的零件具有高精度和光滑的表面,这是保证焊接性一致所需的两个基本要素。
图5.立体光刻(SLA)过程的描述。
不幸的是,基于光敏聚合物树脂工艺缺少可焊性的第三个基本要素。光敏聚合物树脂能使用紫外线(UV)能量固化,但它们不能使用超声波焊接的摩擦生热进行熔化、成形或者粘接。图6.使用注塑模具和三种3D打印技术成型的导能筋放大图。
材料选择图7.焊接筋上方(红色)和下方(蓝色)的平面接触区域。
3D打印技术为新产品评估提供了一种全新且令人兴奋的快捷方式。然而,使用3D打印部件评估其超声波可焊性目前是有局限性的,主要是受限于当前的3D打印技术。超声波焊接要求部件具有高分辨率,较高强度和坚固性,并且是使用可焊接聚合物材料。相关推荐
全部评论 0
暂无评论